Effects of foodborne Fusarium mycotoxins with and without a polymeric glucomannan mycotoxin adsorbent on food intake and nutrient digestibility, body weight, and physical and clinicopathologic variables of mature dogs

Maxwell C. K. Leung Department of Animal and Poultry Science, Ontario Agricultural College, University of Guelph, Guelph, ON N1G 2W1, Canada.

Search for other papers by Maxwell C. K. Leung in
Current site
Google Scholar
PubMed
Close
 MSc
,
Trevor K. Smith Department of Animal and Poultry Science, Ontario Agricultural College, University of Guelph, Guelph, ON N1G 2W1, Canada.

Search for other papers by Trevor K. Smith in
Current site
Google Scholar
PubMed
Close
 PhD
,
Niel A. Karrow Department of Animal and Poultry Science, Ontario Agricultural College, University of Guelph, Guelph, ON N1G 2W1, Canada.

Search for other papers by Niel A. Karrow in
Current site
Google Scholar
PubMed
Close
 PhD
, and
Herman J. Boermans Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada.

Search for other papers by Herman J. Boermans in
Current site
Google Scholar
PubMed
Close
 PhD, DVM

Abstract

Objective—To investigate the effects of feeding cereal-based diets that are naturally contaminated with Fusarium mycotoxins to dogs and assess the efficacy of a polymeric glucomannan mycotoxin adsorbent (GMA) in prevention of Fusarium mycotoxicosis.

Animals—12 mature female Beagles.

Procedures—Dogs received each of 3 cereal-based diets for 14 days. One diet was uncontaminated (control diet), and the other 2 contained contaminated grains; one of the contaminated diets also contained 0.2% GMA. Contaminants included deoxynivalenol, 15-acetyl deoxynivalenol, zearalenone, and fusaric acid. Food intake and nutrient digestibility, body weight, blood pressure, heart rate, and clinicopathologic variables of the dogs were assessed at intervals during the feeding periods.

Results—Food intake and body weight of dogs fed the contaminated diet without GMA were significantly decreased, compared with effects of the control diet. Reductions in blood pressure; heart rate; serum concentrations of total protein, globulin, and fibrinogen; and serum activities of alkaline phosphatase and amylase as well as increases in blood monocyte count and mean corpuscular volume were detected. Consumption of GMA did not ameliorate the effects of the Fusarium mycotoxins. For the GMA-contaminated diet, digestibility of carbohydrate, protein, and lipid was significantly higher than that associated with the control diet, possibly because of physiologic adaptation of the recipient dogs to reduced food intake.

Conclusions and Clinical Relevance—Results indicated that consumption of grains naturally contaminated with Fusarium mycotoxins can adversely affect dogs' feeding behaviors and metabolism. As a food additive, GMA was not effective in prevention of Fusarium mycotoxicosis in dogs.

Abstract

Objective—To investigate the effects of feeding cereal-based diets that are naturally contaminated with Fusarium mycotoxins to dogs and assess the efficacy of a polymeric glucomannan mycotoxin adsorbent (GMA) in prevention of Fusarium mycotoxicosis.

Animals—12 mature female Beagles.

Procedures—Dogs received each of 3 cereal-based diets for 14 days. One diet was uncontaminated (control diet), and the other 2 contained contaminated grains; one of the contaminated diets also contained 0.2% GMA. Contaminants included deoxynivalenol, 15-acetyl deoxynivalenol, zearalenone, and fusaric acid. Food intake and nutrient digestibility, body weight, blood pressure, heart rate, and clinicopathologic variables of the dogs were assessed at intervals during the feeding periods.

Results—Food intake and body weight of dogs fed the contaminated diet without GMA were significantly decreased, compared with effects of the control diet. Reductions in blood pressure; heart rate; serum concentrations of total protein, globulin, and fibrinogen; and serum activities of alkaline phosphatase and amylase as well as increases in blood monocyte count and mean corpuscular volume were detected. Consumption of GMA did not ameliorate the effects of the Fusarium mycotoxins. For the GMA-contaminated diet, digestibility of carbohydrate, protein, and lipid was significantly higher than that associated with the control diet, possibly because of physiologic adaptation of the recipient dogs to reduced food intake.

Conclusions and Clinical Relevance—Results indicated that consumption of grains naturally contaminated with Fusarium mycotoxins can adversely affect dogs' feeding behaviors and metabolism. As a food additive, GMA was not effective in prevention of Fusarium mycotoxicosis in dogs.

All Time Past Year Past 30 Days
Abstract Views 67 0 0
Full Text Views 12443 11866 182
PDF Downloads 298 107 1
Advertisement