Induction of antigen-specific T-cell subset activation to bovine respiratory disease viruses by a modified-live virus vaccine

Ratree Platt Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011

Search for other papers by Ratree Platt in
Current site
Google Scholar
PubMed
Close
 DVM, PhD
,
William Burdett Intervet Inc, 405 State St, PO Box 318, Millsboro, DE 19966

Search for other papers by William Burdett in
Current site
Google Scholar
PubMed
Close
 DVM
, and
James A. Roth Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011

Search for other papers by James A. Roth in
Current site
Google Scholar
PubMed
Close
 DVM, PhD

Abstract

Objective—To determine the efficacy of a modified-live virus vaccine containing bovine herpes virus 1 (BHV-1), bovine respiratory syncytial virus (BRSV), parainfluenza virus 3, and bovine viral diarrhea virus (BVDV) types 1 and 2 to induce neutralizing antibodies and cell-mediated immunity in naïve cattle and protect against BHV-1 challenge.

Animals—17 calves.

Procedures—8 calves were mock-vaccinated with saline (0.9% NaCl) solution (control calves), and 9 calves were vaccinated at 15 to 16 weeks of age. All calves were challenged with BHV-1 25 weeks after vaccination. Neutralizing antibodies and T-cell responsiveness were tested on the day of vaccination and periodically after vaccination and BHV-1 challenge. Specific T-cell responses were evaluated by comparing CD25 upregulation and intracellular interferon-γ expression by 5-color flow cytometry. Titration of BHV-1 in nasal secretions was performed daily after challenge.

Results—Vaccinated calves seroconverted by week 4 after vaccination. Antigen-specific cell-mediated immune responses, by CD25 expression index, were significantly higher in vaccinated calves than control calves. Compared with control calves, antigen-specific interferon-γ expression was significantly higher in calves during weeks 4 to 8 after vaccination, declining by week 24. After BHV-1 challenge, both neutralizing antibodies and T-cell responses of vaccinated calves had anamnestic responses to BHV-1. Vaccinated calves shed virus in nasal secretions at significantly lower titers for a shorter period and had significantly lower rectal temperatures than control calves.

Conclusion and Clinical Relevance—A single dose of vaccine effectively induced humoral and cellular immune responses against BHV-1, BRSV, and BVDV types 1 and 2 and protected calves after BHV-1 challenge for 6 months after vaccination.

Abstract

Objective—To determine the efficacy of a modified-live virus vaccine containing bovine herpes virus 1 (BHV-1), bovine respiratory syncytial virus (BRSV), parainfluenza virus 3, and bovine viral diarrhea virus (BVDV) types 1 and 2 to induce neutralizing antibodies and cell-mediated immunity in naïve cattle and protect against BHV-1 challenge.

Animals—17 calves.

Procedures—8 calves were mock-vaccinated with saline (0.9% NaCl) solution (control calves), and 9 calves were vaccinated at 15 to 16 weeks of age. All calves were challenged with BHV-1 25 weeks after vaccination. Neutralizing antibodies and T-cell responsiveness were tested on the day of vaccination and periodically after vaccination and BHV-1 challenge. Specific T-cell responses were evaluated by comparing CD25 upregulation and intracellular interferon-γ expression by 5-color flow cytometry. Titration of BHV-1 in nasal secretions was performed daily after challenge.

Results—Vaccinated calves seroconverted by week 4 after vaccination. Antigen-specific cell-mediated immune responses, by CD25 expression index, were significantly higher in vaccinated calves than control calves. Compared with control calves, antigen-specific interferon-γ expression was significantly higher in calves during weeks 4 to 8 after vaccination, declining by week 24. After BHV-1 challenge, both neutralizing antibodies and T-cell responses of vaccinated calves had anamnestic responses to BHV-1. Vaccinated calves shed virus in nasal secretions at significantly lower titers for a shorter period and had significantly lower rectal temperatures than control calves.

Conclusion and Clinical Relevance—A single dose of vaccine effectively induced humoral and cellular immune responses against BHV-1, BRSV, and BVDV types 1 and 2 and protected calves after BHV-1 challenge for 6 months after vaccination.

All Time Past Year Past 30 Days
Abstract Views 67 0 0
Full Text Views 8844 8613 7791
PDF Downloads 235 115 5
Advertisement