Assessment of the catabolic effects of interleukin-1β on proteoglycan metabolism in equine cartilage cocultured with synoviocytes

Abigail J. Gregg Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853.

Search for other papers by Abigail J. Gregg in
Current site
Google Scholar
PubMed
Close
 BS
,
Lisa A. Fortier Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853.

Search for other papers by Lisa A. Fortier in
Current site
Google Scholar
PubMed
Close
 DVM, PhD
,
Hussni O. Mohammed Department of Population Medicine and Diagnostic Services, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853.

Search for other papers by Hussni O. Mohammed in
Current site
Google Scholar
PubMed
Close
 DVM, PhD
,
Karen G. Mayr Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853.

Search for other papers by Karen G. Mayr in
Current site
Google Scholar
PubMed
Close
 BS
,
Brian J. Miller Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853.

Search for other papers by Brian J. Miller in
Current site
Google Scholar
PubMed
Close
 BS
, and
Jennifer L. Haupt Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853.

Search for other papers by Jennifer L. Haupt in
Current site
Google Scholar
PubMed
Close
 BS

Abstract

Objective—To evaluate the effects of interleukin (IL)-1β on proteoglycan metabolism in equine cartilage explants when cultured in the presence of synoviocytes.

Sample Population—Samples of cartilage and synovium collected from the femoropatellar joints of three 2- to 3-year-old horses.

Procedures—3 experimental groups were established: cartilage explants only, synoviocytes only, and cartilage explants-synoviocytes in coculture. In each group, samples were cultured with or without IL-1β (10 ng/mL) for 96 hours. Glycosaminoglycan (GAG) content of cartilage and medium samples was measured by use of a spectrophotometric assay; RNA was isolated from synoviocytes and cartilage and analyzed for expression of matrix metalloproteinases (MMP)-3 and -13 (cartilage and synoviocytes), aggrecan (cartilage), collagen type IIB (cartilage), and 18S as a control (cartilage and synoviocytes) by use of quantitative PCR assays. Cartilage matrix metachromasia was assessed histochemically.

Results—IL-1β–induced GAG loss from cartilage was significantly less in cocultures than in cartilage-only cultures. Cartilage aggrecan gene expression was also significantly less downregulated and synoviocyte MMP-3 expression was less upregulated by IL-1β in cocultures, compared with cartilage- and synoviocyteonly cultures. Histochemical findings supported the molecular and biochemical results and revealed maintenance of matrix metachromasia in cocultured cartilage treated with IL-1β.

Conclusions and Clinical Relevance—Results suggest that synoviocytes secrete 1 or more mediators that preferentially protect matrix GAG metabolism from the degradative effects of IL-1β. Further studies involving proteomic and microarray approaches in similar coculture systems may elucidate novel therapeutic targets for the treatment of osteoarthritis.

Abstract

Objective—To evaluate the effects of interleukin (IL)-1β on proteoglycan metabolism in equine cartilage explants when cultured in the presence of synoviocytes.

Sample Population—Samples of cartilage and synovium collected from the femoropatellar joints of three 2- to 3-year-old horses.

Procedures—3 experimental groups were established: cartilage explants only, synoviocytes only, and cartilage explants-synoviocytes in coculture. In each group, samples were cultured with or without IL-1β (10 ng/mL) for 96 hours. Glycosaminoglycan (GAG) content of cartilage and medium samples was measured by use of a spectrophotometric assay; RNA was isolated from synoviocytes and cartilage and analyzed for expression of matrix metalloproteinases (MMP)-3 and -13 (cartilage and synoviocytes), aggrecan (cartilage), collagen type IIB (cartilage), and 18S as a control (cartilage and synoviocytes) by use of quantitative PCR assays. Cartilage matrix metachromasia was assessed histochemically.

Results—IL-1β–induced GAG loss from cartilage was significantly less in cocultures than in cartilage-only cultures. Cartilage aggrecan gene expression was also significantly less downregulated and synoviocyte MMP-3 expression was less upregulated by IL-1β in cocultures, compared with cartilage- and synoviocyteonly cultures. Histochemical findings supported the molecular and biochemical results and revealed maintenance of matrix metachromasia in cocultured cartilage treated with IL-1β.

Conclusions and Clinical Relevance—Results suggest that synoviocytes secrete 1 or more mediators that preferentially protect matrix GAG metabolism from the degradative effects of IL-1β. Further studies involving proteomic and microarray approaches in similar coculture systems may elucidate novel therapeutic targets for the treatment of osteoarthritis.

All Time Past Year Past 30 Days
Abstract Views 44 0 0
Full Text Views 10365 9963 280
PDF Downloads 201 92 11
Advertisement