• 1.

    Lajeunesse D, Hilal G & Pelletier JP, et al. Subchondral bone morphological and biochemical alterations in osteoarthritis. Osteoarthritis Cartilage 1999;7:321322.

    • Search Google Scholar
    • Export Citation
  • 2.

    Sokoloff L. The biology of degenerative joint disease. Chicago: University of Chicago Press, 1969;162.

  • 3.

    Radin EL, Paul IL, Tolkoff MJ. Subchondral bone changes in patients with early degenerative joint disease. Arthritis Rheum 1970;12:400405.

    • Search Google Scholar
    • Export Citation
  • 4.

    Grynpas MD, Alpert B & Katz I, et al. Suchondral bone in osteoarthrisis. Calcif Tissue Int 1991;49:2026.

  • 5.

    Kamibayashi L, Wyuss UP & Cooke TD, et al. Adaptation of bone to physiological stimuli. J Biomech 1997;30:421429.

  • 6.

    Petersen MM, Olsen C & Lauritzen JB, et al. Late changes in bone mineral density of the proximal tibia following total or partial medial meniscectomy: a randomized study. J Orthop Res 1996;14:1621.

    • Search Google Scholar
    • Export Citation
  • 7.

    Dieppe P, Cushnaghan J & Young P, et al. Prediction of the progression of joint space narrowing in osteoarthritis of the knee by bone scintigraphy. Ann Rheum Dis 1993;52:557563.

    • Search Google Scholar
    • Export Citation
  • 8.

    McCarthy C, Cushnaghan J, Dieppe P. The predictive role of scintigraphy in radiographic osteoarthritis of the hand. Osteoarthritis Cartilage 1994;2:2528.

    • Search Google Scholar
    • Export Citation
  • 9.

    Bruyere O, Cardenne C & Lejeune E, et al. Subchondral tibial bone mineral density predicts future joint space narrowing at the medial femorotibial compartment in patients with knee osteoarthritis. Bone 2003;32:541545.

    • Search Google Scholar
    • Export Citation
  • 10.

    Dequeker J, Mokassa L & Aerssens J, et al. Bone density and local growth factors in generalized osteoarthritis. Microsc Res Tech 1997;37:358371.

  • 11.

    Lust G. An overview of the pathogenesis of canine hip dysplasia. J Am Vet Med Assoc 1997;210:14431445.

  • 12.

    Orphanoudakis SC, Jensen PS & Rauschkolb EN, et al. Bone mineral analysis using single energy computed tomography. Invest Radiol 1979;14:122130.

  • 13.

    Samii VF, Les CM & Clifford M, et al. Computed tomographic osteoabsorptiometry of the elbow joint in clinically normal dogs. Am J Vet Res 2002;63:159166.

    • Search Google Scholar
    • Export Citation
  • 14.

    Todhunter RJ, Zachos TA & Gilbert RO, et al. Onset of epiphyseal mineralization and growth plate closure in radiographically normal and dysplastic Labrador Retrievers. J Am Vet Med Assoc 1997;210:14581462.

    • Search Google Scholar
    • Export Citation
  • 15.

    Burton-Wurster N, Farese J & Todhunter RJ, et al. Site-specific variation in femoral head cartilage composition in dogs at high and low risk for development of osteoarthritis: insights into cartilage degeneration. Osteoarthritis Cartilage 1999;7:486497.

    • Search Google Scholar
    • Export Citation
  • 16.

    Farese JP, Todhunter RJ & Lust G, et al. Dorsolateral subluxation of hip joints in dogs in a weight-bearing position with radiography and computed tomography. Vet Surg 1998;27:393405.

    • Search Google Scholar
    • Export Citation
  • 17.

    Lust G, Todhunter RJ & Erb HN, et al. Comparison of three radiographic methods for diagnosis of hip dysplasia in eight-monthold dogs. J Am Vet Med Assoc 2001;219:12421246.

    • Search Google Scholar
    • Export Citation
  • 18.

    Smith GK. Advances in diagnosing canine hip dysplasia. J Am Vet Med Assoc 1997;210:14511457.

  • 19.

    Henry GA. Radiographic development of canine hip dysplasia. Vet Clin North Am Small Anim Pract 1992;22:559578.

  • 20.

    Lust G, Todhunter RJ & Erb HN, et al. Repeatability of dorsolateral subluxation scores in dogs and correlation with macroscopic appearance of hip osteoarthrosis. Am J Vet Res 2001;62:17111715.

    • Search Google Scholar
    • Export Citation
  • 21.

    Todhunter RJ, Grohn YT & Bliss SP, et al. Evaluation of multiple radiographic predictors of cartilage lesions in the hip joints of eight-month-old dogs. Am J Vet Res 2003;64:14721478.

    • Search Google Scholar
    • Export Citation
  • 22.

    Wolff J. Das Gesetz der Transformation der Knochen. Berlin: Verlag August Hirschwald, 1892. [English translation, Berlin: Springer-Verlag Inc, 1986].

    • Search Google Scholar
    • Export Citation
  • 23.

    Frost HM. A 2003 update of bone physiology and Wolff's law for clinicians. Angle Orthod 2004;74:315.

  • 24.

    Frost HM. From Wolff's law to the Utah paradigm: insights about bone physiology and its clinical applications. Anat Rec 2001;262:398419.

    • Search Google Scholar
    • Export Citation
  • 25.

    Pearson OM, Lieberman DE. The aging of Wolff's “law”: ontogeny and response to mechanical loading in cortical bone. Am J Phys Anthropol 2004;(suppl 39):6399.

    • Search Google Scholar
    • Export Citation
  • 26.

    Muller-Gerbl M. The subchondral bone plate. Adv Anat Embryol Cell Biol 1998;141:1134.

  • 27.

    Radin EL. Subchondral bone changes and cartilage damage. Equine Vet J 1999;31:9495.

  • 28.

    Sicard GK, Markel MD, Manley PA. Histomorphometric analysis of the proximal portion of the femur in dogs with moderate osteoarthritis. Am J Vet Res 2005;66:150155.

    • Search Google Scholar
    • Export Citation
  • 29.

    Norrdin RW, Kawcak CE & Capwell BA, et al. Calcified cartilage morphometry and its relation of subchondral bone remodeling in equine arthrosis. Bone 1999;24:109114.

    • Search Google Scholar
    • Export Citation
  • 30.

    Sokoloff L. Microcracks in the calcified layer of articular cartilage. Arch Pathol Lab Med 1993;117:191195.

  • 31.

    Fazzalari NL, Vernon-Roberts BV, Darracott J. Osteoarthritis of the hip: possible protective and causative roles of trabecular microfractures in the head of the femur. Clin Orthop 1987;216:224233.

    • Search Google Scholar
    • Export Citation
  • 32.

    Fazzalari NL, Moore RJ & Manthey BA, et al. Comparative study of iliac crest and subchondral femoral bone in osteoarthritic patients. Bone 1992;13:331335.

    • Search Google Scholar
    • Export Citation
  • 33.

    Radin EL, Paul IL. Does cartilage compliance reduce skeletal impact loads? The relative force-attenuating properties of articular cartilage, synovial fluid, periarticular soft tissues, and bone. Arthritis Rheum 1970;13:139144.

    • Search Google Scholar
    • Export Citation
  • 34.

    Li B, Aspden RM. Composition and mechanical properties of cancellous bone from the femoral head of patients with osteoporosis or osteoarthritis. J Bone Miner Res 1997;12:641651.

    • Search Google Scholar
    • Export Citation
  • 35.

    Burr DB, Schaffler MB. The involvement of subchondral mineralized tissues in osteoarthrosis: quantitative microscopic evidence. Microsc Res Tech 1997;37:343357.

    • Search Google Scholar
    • Export Citation
  • 36.

    Brown TD, Radin EL & Martin RB, et al. Finite element studies of some juxtaarticular stress changes due to localized subchondral stiffening. J Biomech 1984;17:1124.

    • Search Google Scholar
    • Export Citation
  • 37.

    Burr DB, Radin EL. Microfractures and microcracks in subchondral bone: are they relevant to osteoarthrosis? Rheum Dis Clin North Am 2003;29:675685.

    • Search Google Scholar
    • Export Citation
  • 38.

    Edinger DT, Hayashi K & Hongyu Y, et al. Histomorphometric analysis of the proximal portion of the femur in dogs with osteoarthritis. Am J Vet Res 2000;61:12671272.

    • Search Google Scholar
    • Export Citation
  • 39.

    Vahey JW, Lewis JL, Vanderby R. Elastic moduli, yield, and stress, and ultimate stress of cancellous bone in the canine proximal femur. J Biomech 1987;20:2933.

    • Search Google Scholar
    • Export Citation
  • 40.

    McCullough EC, Baker HL & Houser OW, et al. An evaluation of the quantitative and radiation features of a scanning x-ray transverse tomography: the EMI scanner. Radiology 1974;111:709715.

    • Search Google Scholar
    • Export Citation
  • 41.

    Antonacci MD, Hanson DS, Heggeness MH. Pitfalls in the measurement of bone mineral density by dual energy x-ray absorptiometry. Spine 1996;21:8791.

    • Search Google Scholar
    • Export Citation
  • 42.

    Griesen HA, Summers BA, Lust G. Ultrastructure of the articular cartilage and synovium in the early stages of degenerative joint disease in canine hip joints. Am J Vet Res 1982;43:19631971.

    • Search Google Scholar
    • Export Citation

Advertisement

Assessment of bone mineral density of the femoral head in dogs with early osteoarthritis

View More View Less
  • 1 Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853.
  • | 2 Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853.
  • | 3 James A. Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853.
  • | 4 Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853.
  • | 5 James A. Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853.
  • | 6 James A. Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853.
  • | 7 Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853.

Abstract

Objective—To compare the bone mineral density (BMD) of the proximal portion of the femur in dogs with and without early osteoarthritis secondary to hip dysplasia.

Animals—24 dogs (3 Greyhounds, 6 Labrador-Greyhound crossbreeds, and 15 Labrador Retrievers).

Procedure—Computed tomography (CT) of the pelvis, including a bone-density phantom, was performed for each dog. Centrally located transverse CT slices and a computer workstation were used to identify 16 regions of interest (ROIs) in the proximal portion of the femur. For each ROI, the mean Hounsfield unit value was recorded; by use of the bone-density phantom and linear regression analysis, those values were converted to equivalent BMD (eBMD). Mean eBMD values for the subchondral and nonsubchondral ROIs in dogs with and without osteoarthritis (determined at necropsy) were compared. A mixed-model ANOVA and post hoc linear contrasts were used to evaluate the effects of osteoarthritis, breed, and sex on the BMD value.

Results—At necropsy, osteoarthritis was detected in 14 hip joints in 9 dogs; all lesions included early cartilage fibrillation. After adjusting for breed and sex, eBMD in subchondral ROIs 8 and 12 (adjacent to the fovea) were 8% and 6% higher, respectively, in osteoarthritis-affected dogs, compared with unaffected dogs; in the nonsubchondral ROIs, eBMD was 10% higher in osteoarthritis-affected dogs.

Conclusions and Clinical Relevance—Compared with findings in unaffected dogs, increased eBMD in hip joints of dogs with early osteoarthritis supports a strong relationship between the subchondral and epiphyseal regions and articular cartilage in the pathogenesis and progression of osteoarthritis.

Contributor Notes

Dr Farese's present address is Department of Small Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32601.

Supported in part by the Unrestricted Alumni Fund and Consolidated Research Program, College of Veterinary Medicine, Cornell University; National Institutes of Health grant AR35664; and the Ralston-Purina Company, St Louis, Mo.

Presented in abstract form at the American College of Veterinary Surgery Symposium, San Diego, October 2005.

The authors thank Wendy vanden Berg Foels for assistance with the density phantom and Dr. Hollis Erb for statistical assistance.

Address correspondence to Dr. Chalmers.