Time-dependent alterations in gene expression of interleukin-8 in the bronchial epithelium of horses with recurrent airway obstruction

Dorothy M. Ainsworth Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853.

Search for other papers by Dorothy M. Ainsworth in
Current site
Google Scholar
PubMed
Close
 DVM, PhD
,
Bettina Wagner James A. Baker Institute of Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853.

Search for other papers by Bettina Wagner in
Current site
Google Scholar
PubMed
Close
 DVM, PhD
,
Marco Franchini Institute of Veterinary Virology, Faculty of Veterinary Medicine, University of Berne, Berne, Switzerland CH-3001.

Search for other papers by Marco Franchini in
Current site
Google Scholar
PubMed
Close
 DMV, PhD
,
Gabriele Grünig Department of Pathology, St Lukes Roosevelt Hospital Center, Columbia University, New York, NY 10019.

Search for other papers by Gabriele Grünig in
Current site
Google Scholar
PubMed
Close
 DVM, PhD
,
Hollis N. Erb Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853.

Search for other papers by Hollis N. Erb in
Current site
Google Scholar
PubMed
Close
 DVM, PhD
, and
Jean-Yin Tan Mid-Atlantic Equine Clinic, Ringoes, NJ 08822.

Search for other papers by Jean-Yin Tan in
Current site
Google Scholar
PubMed
Close
 DVM

Abstract

Objective—To evaluate time-dependent alterations in gene expression of chemokines in bronchial epithelium of recurrent airway obstruction (RAO)-affected horses and whether alterations resulted from increases in gene expression of interleukin (IL)-17 in cells isolated from bronchoalveolar lavage fluid (BALF).

Animals—8 RAO-susceptible horses and 9 control horses.

Procedure—In 2 experiments, both groups of horses were evaluated after being maintained on pasture and after being stabled and fed dusty hay for 1, 14, 35, and 49 days (experiment 1) or 14 and 28 days (experiment 2). In experiment 1, gene expression of IL-8, chemokine (C-X-C motif) ligand 1 (CXCL1), granulocyte-macrophage colony-stimulating factor (GM-CSF), granulocyte colony-stimulating factor (G-CSF), and Toll-like receptor 4 (TLR4) in epithelium and IL-8, IL-17, and TLR4 in BALF cells was measured. In experiment 2, bronchial biopsy specimens were evaluated for IL-8 immunoreactivity.

Results—In RAO-susceptible horses after 14 days of challenge exposure, there was a 3- and 10-fold increase in gene expression of IL-8 for epithelial and BALF cells and an increase in IL-8 immunoreactivity in epithelial cells. Challenge exposure failed to alter gene expression of CXCL1, GM-CSF, G-CSF, and TLR4 in epithelial cells of any horses at any time point. During challenge exposure, gene expression of BALF cell IL-17 was downregulated in control horses (day 1) and upregulated in RAO-affected horses (day 35).

Conclusions and Clinical Relevance—Epithelial-derived IL-8 may promote airway neutrophilia, but the inciting stimulus is unlikely to be IL-17 because upregulation of this gene is subsequent to that of IL-8 in epithelial cells.

Abstract

Objective—To evaluate time-dependent alterations in gene expression of chemokines in bronchial epithelium of recurrent airway obstruction (RAO)-affected horses and whether alterations resulted from increases in gene expression of interleukin (IL)-17 in cells isolated from bronchoalveolar lavage fluid (BALF).

Animals—8 RAO-susceptible horses and 9 control horses.

Procedure—In 2 experiments, both groups of horses were evaluated after being maintained on pasture and after being stabled and fed dusty hay for 1, 14, 35, and 49 days (experiment 1) or 14 and 28 days (experiment 2). In experiment 1, gene expression of IL-8, chemokine (C-X-C motif) ligand 1 (CXCL1), granulocyte-macrophage colony-stimulating factor (GM-CSF), granulocyte colony-stimulating factor (G-CSF), and Toll-like receptor 4 (TLR4) in epithelium and IL-8, IL-17, and TLR4 in BALF cells was measured. In experiment 2, bronchial biopsy specimens were evaluated for IL-8 immunoreactivity.

Results—In RAO-susceptible horses after 14 days of challenge exposure, there was a 3- and 10-fold increase in gene expression of IL-8 for epithelial and BALF cells and an increase in IL-8 immunoreactivity in epithelial cells. Challenge exposure failed to alter gene expression of CXCL1, GM-CSF, G-CSF, and TLR4 in epithelial cells of any horses at any time point. During challenge exposure, gene expression of BALF cell IL-17 was downregulated in control horses (day 1) and upregulated in RAO-affected horses (day 35).

Conclusions and Clinical Relevance—Epithelial-derived IL-8 may promote airway neutrophilia, but the inciting stimulus is unlikely to be IL-17 because upregulation of this gene is subsequent to that of IL-8 in epithelial cells.

All Time Past Year Past 30 Days
Abstract Views 103 0 0
Full Text Views 365 218 14
PDF Downloads 155 98 2
Advertisement