In vitro efficacy of a buffered chelating solution as an antimicrobial potentiator for antifungal drugs against fungal pathogens obtained from horses with mycotic keratitis

William L. Weinstein Department of Small Animal Medicine and Surgery, College of Veterinary Medicine, University of Georgia, Athens, GA 30602.

Search for other papers by William L. Weinstein in
Current site
Google Scholar
PubMed
Close
 DVM
,
Phillip A. Moore Department of Small Animal Medicine and Surgery, College of Veterinary Medicine, University of Georgia, Athens, GA 30602.

Search for other papers by Phillip A. Moore in
Current site
Google Scholar
PubMed
Close
 DVM
,
Susan Sanchez Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602.
Athens Diagnostic Laboratory, College of Veterinary Medicine, University of Georgia, Athens, GA 30602.

Search for other papers by Susan Sanchez in
Current site
Google Scholar
PubMed
Close
 PhD
,
Ursula M. Dietrich Department of Small Animal Medicine and Surgery, College of Veterinary Medicine, University of Georgia, Athens, GA 30602.

Search for other papers by Ursula M. Dietrich in
Current site
Google Scholar
PubMed
Close
 DVM, Dr med vet
,
Richard E. Wooley Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602.

Search for other papers by Richard E. Wooley in
Current site
Google Scholar
PubMed
Close
 DVM, PhD
, and
Branson W. Ritchie Department of Small Animal Medicine and Surgery, College of Veterinary Medicine, University of Georgia, Athens, GA 30602.

Search for other papers by Branson W. Ritchie in
Current site
Google Scholar
PubMed
Close
 DVM, PhD

Abstract

Objective—To determine whether a novel third-generation chelating agent (8mM disodium EDTA dehydrate and 20mM 2-amino-2-hydroxymethyl-1, 3-propanediol) would act as an antimicrobial potentiator to enhance in vitro activity of antifungal medications against fungal isolates obtained from horses with mycotic keratitis.

Sample Population—Fungal isolates (3 Aspergillus isolates, 5 Fusarium isolates, 1 Penicillium isolate, 1 Cladosporium isolate, and 1 Curvularia isolate) obtained from horses with mycotic keratitis and 2 quality-control strains obtained from the American Type Culture Collection (ATCC; Candida albicans ATCC 90028 and Paecilomyces variotii ATCC 36257).

Procedure—Minimum inhibitory concentrations (MICs) against fungal isolates for 4 antifungal drugs (miconazole, ketoconazole, itraconazole, and natamycin) were compared with MICs against fungal isolates for the combinations of each of the 4 antifungal drugs and the chelating agent. The Clinical and Laboratory Standards Institute microdilution assay method was performed by use of reference-grade antifungal powders against the fungal isolates and quality-control strains of fungi.

Results—Values for the MIC at which the antifungal drugs decreased the growth of an organism by 50% (MIC50) and 90% (MIC90) were decreased for the control strains and ophthalmic fungal isolates by 50% to 100% when the drugs were used in combination with the chelating agent at a concentration of up to 540 μg/mL.

Conclusions and Clinical Relevance—The chelating agent increased in vitro activity of antifungal drugs against common fungal pathogens isolated from eyes of horses with mycotic keratitis.

Abstract

Objective—To determine whether a novel third-generation chelating agent (8mM disodium EDTA dehydrate and 20mM 2-amino-2-hydroxymethyl-1, 3-propanediol) would act as an antimicrobial potentiator to enhance in vitro activity of antifungal medications against fungal isolates obtained from horses with mycotic keratitis.

Sample Population—Fungal isolates (3 Aspergillus isolates, 5 Fusarium isolates, 1 Penicillium isolate, 1 Cladosporium isolate, and 1 Curvularia isolate) obtained from horses with mycotic keratitis and 2 quality-control strains obtained from the American Type Culture Collection (ATCC; Candida albicans ATCC 90028 and Paecilomyces variotii ATCC 36257).

Procedure—Minimum inhibitory concentrations (MICs) against fungal isolates for 4 antifungal drugs (miconazole, ketoconazole, itraconazole, and natamycin) were compared with MICs against fungal isolates for the combinations of each of the 4 antifungal drugs and the chelating agent. The Clinical and Laboratory Standards Institute microdilution assay method was performed by use of reference-grade antifungal powders against the fungal isolates and quality-control strains of fungi.

Results—Values for the MIC at which the antifungal drugs decreased the growth of an organism by 50% (MIC50) and 90% (MIC90) were decreased for the control strains and ophthalmic fungal isolates by 50% to 100% when the drugs were used in combination with the chelating agent at a concentration of up to 540 μg/mL.

Conclusions and Clinical Relevance—The chelating agent increased in vitro activity of antifungal drugs against common fungal pathogens isolated from eyes of horses with mycotic keratitis.

All Time Past Year Past 30 Days
Abstract Views 55 0 0
Full Text Views 10356 10089 9535
PDF Downloads 220 109 17
Advertisement