Cardiovascular and respiratory effects of ketamine infusions in isoflurane-anesthetized dogs before and during noxious stimulation

Pedro Boscan Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, CA 95616.

Search for other papers by Pedro Boscan in
Current site
Google Scholar
PubMed
Close
 DVM, PhD
,
Bruno H. Pypendop Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, CA 95616.

Search for other papers by Bruno H. Pypendop in
Current site
Google Scholar
PubMed
Close
 DrMedVet, DrVetSci
,
Adrian M. Solano Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, CA 95616.

Search for other papers by Adrian M. Solano in
Current site
Google Scholar
PubMed
Close
 DVM
, and
Jan E. Ilkiw Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, CA 95616.

Search for other papers by Jan E. Ilkiw in
Current site
Google Scholar
PubMed
Close
 BVSc, PhD

Abstract

Objective—To characterize the effects of ketamine administration on the cardiovascular and respiratory systems and on acid-base balance and to record adverse effects of ketamine in isoflurane-anesthetized dogs.

Animals—6 healthy adult mongrel dogs.

Procedure—Dogs were anesthetized with isoflurane (1.25 times the individual minimum alveolar concentration) in oxygen, and ketamine was administered IV to target pseudo–steady-state plasma concentrations of 0, 0.5, 1, 2, 5, 8, and 11 µg/mL. Isoflurane concentration was reduced to an equipotent concentration. Cardiovascular, respiratory, and acid-base variables; body temperature; urine production; and adverse effects were recorded before and during noxious stimulation. Cardiac index, stroke index, rate-pressure product, systemic vascular resistance index, pulmonary vascular resistance index, left ventricular stroke work index, right ventricular stroke work index, arterial oxygen concentration, mixed-venous oxygen concentration, oxygen delivery, oxygen consumption, oxygen extraction ratio, alveolar-arterial oxygen partial pressure gradient, and venous admixture were calculated. Plasma ketamine and norketamine concentrations were measured.

Results—Overall, ketamine administration improved ventilation, oxygenation, hemodynamics, and oxygen delivery in isoflurane-anesthetized dogs in a dosedependent manner. With the addition of ketamine, core body temperature was maintained or increased and urine production was maintained at an acceptable amount. However, at the higher plasma ketamine concentrations, adverse effects such as spontaneous movement and profuse salivation were observed. Myoclonus and dysphoria were observed during recovery in most dogs.

Conclusions and Clinical Relevance—Infusion of ketamine appears to be a suitable technique for balanced anesthesia with isoflurane in dogs. Plasma ketamine concentrations between 2 to 3 µg/mL elicited the most benefits with minimal adverse effects. (Am J Vet Res 2005;66:2122–2129)

Abstract

Objective—To characterize the effects of ketamine administration on the cardiovascular and respiratory systems and on acid-base balance and to record adverse effects of ketamine in isoflurane-anesthetized dogs.

Animals—6 healthy adult mongrel dogs.

Procedure—Dogs were anesthetized with isoflurane (1.25 times the individual minimum alveolar concentration) in oxygen, and ketamine was administered IV to target pseudo–steady-state plasma concentrations of 0, 0.5, 1, 2, 5, 8, and 11 µg/mL. Isoflurane concentration was reduced to an equipotent concentration. Cardiovascular, respiratory, and acid-base variables; body temperature; urine production; and adverse effects were recorded before and during noxious stimulation. Cardiac index, stroke index, rate-pressure product, systemic vascular resistance index, pulmonary vascular resistance index, left ventricular stroke work index, right ventricular stroke work index, arterial oxygen concentration, mixed-venous oxygen concentration, oxygen delivery, oxygen consumption, oxygen extraction ratio, alveolar-arterial oxygen partial pressure gradient, and venous admixture were calculated. Plasma ketamine and norketamine concentrations were measured.

Results—Overall, ketamine administration improved ventilation, oxygenation, hemodynamics, and oxygen delivery in isoflurane-anesthetized dogs in a dosedependent manner. With the addition of ketamine, core body temperature was maintained or increased and urine production was maintained at an acceptable amount. However, at the higher plasma ketamine concentrations, adverse effects such as spontaneous movement and profuse salivation were observed. Myoclonus and dysphoria were observed during recovery in most dogs.

Conclusions and Clinical Relevance—Infusion of ketamine appears to be a suitable technique for balanced anesthesia with isoflurane in dogs. Plasma ketamine concentrations between 2 to 3 µg/mL elicited the most benefits with minimal adverse effects. (Am J Vet Res 2005;66:2122–2129)

All Time Past Year Past 30 Days
Abstract Views 151 0 0
Full Text Views 2807 2384 734
PDF Downloads 1387 797 106
Advertisement