Advertisement

Intracranial elastance in isoflurane-anesthetized horses

Robert J. BrosnanDepartment of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, CA 95616.

Search for other papers by Robert J. Brosnan in
Current site
Google Scholar
PubMed
Close
 DVM, PhD
,
Richard A. LeCouteurDepartment of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, CA 95616.

Search for other papers by Richard A. LeCouteur in
Current site
Google Scholar
PubMed
Close
 BVSc, PhD
,
Eugene P. SteffeyDepartment of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, CA 95616.

Search for other papers by Eugene P. Steffey in
Current site
Google Scholar
PubMed
Close
 VMD, PhD
,
Ayako ImaiDepartment of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, CA 95616.

Search for other papers by Ayako Imai in
Current site
Google Scholar
PubMed
Close
 DVM, MS
, and
Thomas B. FarverDepartment of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA 95616.

Search for other papers by Thomas B. Farver in
Current site
Google Scholar
PubMed
Close
 PhD

Abstract

Objective—To determine whether high intracranial pressure (ICP) during spontaneous ventilation (SV) in anesthetized horses coincides with an increase in intracranial elastance (ie, change in ICP per unit change of intracranial volume).

Animals—6 adult horses.

Procedure—Anesthesia was induced and maintained in each horse for 5 hours with isoflurane at a constant dose equal to 1.2 times the minimum alveolar concentration. Direct ICP measurements were obtained by use of a strain gauge transducer inserted in the subarachnoid space, and arterial blood pressure was measured from a carotid artery. Physiologic responses were recorded after 15 minutes of normocapnic controlled ventilation (CV) and then after 10 minutes of SV. Aliquots (3 mL) of CSF were removed from each horse during SV until ICP returned to CV values. Slopes of pressure-volume curves yielded intracranial elastance.

Results—Intracranial elastance ranged from 0.2 to 3.7 mm Hg/mL after removal of the first aliquot of CSF. Slopes of pressure-volume curves were largest following removal of the initial CSF aliquot, but shallow portions of curves were detected at relatively high ICPs (25 to 35 mm Hg). A second-order relationship between SV ICP and initial intracranial elastance was found.

Conclusions and Clinical Relevance—In horses anesthetized with isoflurane, small changes in intracranial volume can cause large changes in ICP. Increased intracranial elastance could further exacerbate preexisting intracranial hypertension. However, removal of small volumes of CSF may cause rapid compensatory replacement from other intracranial compartments, which suggests steady-state maintenance of an increase in intracranial volume during isoflurane anesthesia in horses. (Am J Vet Res 2004;65:1042–1046)

Abstract

Objective—To determine whether high intracranial pressure (ICP) during spontaneous ventilation (SV) in anesthetized horses coincides with an increase in intracranial elastance (ie, change in ICP per unit change of intracranial volume).

Animals—6 adult horses.

Procedure—Anesthesia was induced and maintained in each horse for 5 hours with isoflurane at a constant dose equal to 1.2 times the minimum alveolar concentration. Direct ICP measurements were obtained by use of a strain gauge transducer inserted in the subarachnoid space, and arterial blood pressure was measured from a carotid artery. Physiologic responses were recorded after 15 minutes of normocapnic controlled ventilation (CV) and then after 10 minutes of SV. Aliquots (3 mL) of CSF were removed from each horse during SV until ICP returned to CV values. Slopes of pressure-volume curves yielded intracranial elastance.

Results—Intracranial elastance ranged from 0.2 to 3.7 mm Hg/mL after removal of the first aliquot of CSF. Slopes of pressure-volume curves were largest following removal of the initial CSF aliquot, but shallow portions of curves were detected at relatively high ICPs (25 to 35 mm Hg). A second-order relationship between SV ICP and initial intracranial elastance was found.

Conclusions and Clinical Relevance—In horses anesthetized with isoflurane, small changes in intracranial volume can cause large changes in ICP. Increased intracranial elastance could further exacerbate preexisting intracranial hypertension. However, removal of small volumes of CSF may cause rapid compensatory replacement from other intracranial compartments, which suggests steady-state maintenance of an increase in intracranial volume during isoflurane anesthesia in horses. (Am J Vet Res 2004;65:1042–1046)