Plasma and synovial fluid endothelin-1 and nitric oxide concentrations in horses with and without joint disease

Jorge de la Calle Department of Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803.
Present address is Hospital Veterinario Sierra de Madrid, San Agustin de Guadalix, Madrid, Spain.

Search for other papers by Jorge de la Calle in
Current site
Google Scholar
PubMed
Close
 LVM, MS
,
Daniel J. Burba Department of Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803.

Search for other papers by Daniel J. Burba in
Current site
Google Scholar
PubMed
Close
 DVM
,
Chidambaram M. Ramaswamy Department of Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803.

Search for other papers by Chidambaram M. Ramaswamy in
Current site
Google Scholar
PubMed
Close
 BVSc, MSc
,
Giselle Hosgood Department of Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803.

Search for other papers by Giselle Hosgood in
Current site
Google Scholar
PubMed
Close
 BVSc, MS
,
Jamil Williams Department of Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803.

Search for other papers by Jamil Williams in
Current site
Google Scholar
PubMed
Close
 MS, DVM
,
Casey LeBlanc Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803.

Search for other papers by Casey LeBlanc in
Current site
Google Scholar
PubMed
Close
 DVM
, and
Rustin M. Moore Equine Health Studies Program, Department of Veterinary Clinical Sciences, Pathobiological Sciences and Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803.

Search for other papers by Rustin M. Moore in
Current site
Google Scholar
PubMed
Close
 DVM, PhD

Abstract

Objective—To compare plasma and synovial fluid endothelin-1 (ET-1) and nitric oxide (NO) concentrations in clinically normal horses and horses with joint disease.

Animals—36 horses with joint disease, and 15 horses without joint disease.

Procedure—Horses with joint disease were assigned to 1 of the 3 groups (ie, synovitis, degenerative joint disease [DJD], or joint sepsis groups) on the basis of findings on clinical and radiographic examination and synovial fluid analysis. Endothelin-1 and NO concentrations were measured in plasma from blood samples, collected from the jugular vein and ipsilateral cephalic or saphenous vein of the limb with an affected or unaffected joint, as well as in synovial fluid samples obtained via arthrocentesis from the involved joint.

Results—Plasma ET-1 concentrations between affected and unaffected groups were not significantly different. Median concentration and concentration range of ET-1 in synovial fluid obtained from the joint sepsis group (35.830 pg/mL, 7.926 to 86.614 pg/mL; n = 7) were significantly greater than values from the synovitis (17.531 pg/mL, 0.01 to 46.908 pg/mL; 18), DJD (22.858 pg/mL, 0.01 to 49.990 pg/mL; 10), and unaffected (10.547 pg/mL, 0.01 to 35.927 pg/mL; 10) groups. Plasma and synovial fluid NO concentrations between affected and unaffected groups were not significantly different.

Conclusions and Clinical Relevance—Endothelin-1 is locally synthesized in the joints of horses with various types of joint disease. Synovial fluid concentrations of ET-1 varied among horses with joint disease, with concentrations significantly higher in the synovial fluid of horses with joint sepsis. These results indicate that ET-1 may play a role in the pathophysiologic mechanism of joint disease in horses. (Am J Vet Res 2002;63:1648–1654)

Abstract

Objective—To compare plasma and synovial fluid endothelin-1 (ET-1) and nitric oxide (NO) concentrations in clinically normal horses and horses with joint disease.

Animals—36 horses with joint disease, and 15 horses without joint disease.

Procedure—Horses with joint disease were assigned to 1 of the 3 groups (ie, synovitis, degenerative joint disease [DJD], or joint sepsis groups) on the basis of findings on clinical and radiographic examination and synovial fluid analysis. Endothelin-1 and NO concentrations were measured in plasma from blood samples, collected from the jugular vein and ipsilateral cephalic or saphenous vein of the limb with an affected or unaffected joint, as well as in synovial fluid samples obtained via arthrocentesis from the involved joint.

Results—Plasma ET-1 concentrations between affected and unaffected groups were not significantly different. Median concentration and concentration range of ET-1 in synovial fluid obtained from the joint sepsis group (35.830 pg/mL, 7.926 to 86.614 pg/mL; n = 7) were significantly greater than values from the synovitis (17.531 pg/mL, 0.01 to 46.908 pg/mL; 18), DJD (22.858 pg/mL, 0.01 to 49.990 pg/mL; 10), and unaffected (10.547 pg/mL, 0.01 to 35.927 pg/mL; 10) groups. Plasma and synovial fluid NO concentrations between affected and unaffected groups were not significantly different.

Conclusions and Clinical Relevance—Endothelin-1 is locally synthesized in the joints of horses with various types of joint disease. Synovial fluid concentrations of ET-1 varied among horses with joint disease, with concentrations significantly higher in the synovial fluid of horses with joint sepsis. These results indicate that ET-1 may play a role in the pathophysiologic mechanism of joint disease in horses. (Am J Vet Res 2002;63:1648–1654)

All Time Past Year Past 30 Days
Abstract Views 56 0 0
Full Text Views 610 551 366
PDF Downloads 70 48 6
Advertisement