Advertisement

Plasma pharmacokinetics and tissue fluid concentrations of meropenem after intravenous and subcutaneous administration in dogs

Tara BidgoodDepartment of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27606.

Search for other papers by Tara Bidgood in
Current site
Google Scholar
PubMed
Close
 DVM
and
Mark G. PapichDepartment of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27606.

Search for other papers by Mark G. Papich in
Current site
Google Scholar
PubMed
Close
 DVM, MS

Abstract

Objective—To estimate pharmacokinetic variables and measure tissue fluid concentrations of meropenem after IV and SC administration in dogs.

Animals—6 healthy adult dogs.

Procedure—Dogs were administered a single dose of meropenem (20 mg/kg) IV and SC in a crossover design. To characterize the distribution of meropenem in dogs and to evaluate a unique tissue fluid collection method, an in vivo ultrafiltration device was used to collect interstitial fluid. Plasma, tissue fluid, and urine samples were analyzed by use of high-performance liquid chromatography. Protein binding was determined by use of an ultrafiltration device.

Results—Plasma data were analyzed by compartmental and noncompartmental pharmacokinetic methods. Mean ± SD values for half-life, volume of distribution, and clearance after IV administration for plasma samples were 0.67 ± 0.07 hours, 0.372 ± 0.053 L/kg, and 6.53 ± 1.51 mL/min/kg, respectively, and half-life for tissue fluid samples was 1.15 ± 0.57 hours. Half-life after SC administration was 0.98 ± 0.21 and 1.31 ± 0.54 hours for plasma and tissue fluid, respectively. Protein binding was 11.87%, and bioavailability after SC administration was 84%.

Conclusions and Clinical Relevance—Analysis of our data revealed that tissue fluid and plasma (unbound fraction) concentrations were similar. Because of the kinetic similarity of meropenem in the extravascular and vascular spaces, tissue fluid concentrations can be predicted from plasma concentrations. We concluded that a dosage of 8 mg/kg, SC, every 12 hours would achieve adequate tissue fluid and urine concentrations for susceptible bacteria with a minimum inhibitory concentration of 0.12 µg/mL. (Am J Vet Res 2002;63:1622–1628)

Abstract

Objective—To estimate pharmacokinetic variables and measure tissue fluid concentrations of meropenem after IV and SC administration in dogs.

Animals—6 healthy adult dogs.

Procedure—Dogs were administered a single dose of meropenem (20 mg/kg) IV and SC in a crossover design. To characterize the distribution of meropenem in dogs and to evaluate a unique tissue fluid collection method, an in vivo ultrafiltration device was used to collect interstitial fluid. Plasma, tissue fluid, and urine samples were analyzed by use of high-performance liquid chromatography. Protein binding was determined by use of an ultrafiltration device.

Results—Plasma data were analyzed by compartmental and noncompartmental pharmacokinetic methods. Mean ± SD values for half-life, volume of distribution, and clearance after IV administration for plasma samples were 0.67 ± 0.07 hours, 0.372 ± 0.053 L/kg, and 6.53 ± 1.51 mL/min/kg, respectively, and half-life for tissue fluid samples was 1.15 ± 0.57 hours. Half-life after SC administration was 0.98 ± 0.21 and 1.31 ± 0.54 hours for plasma and tissue fluid, respectively. Protein binding was 11.87%, and bioavailability after SC administration was 84%.

Conclusions and Clinical Relevance—Analysis of our data revealed that tissue fluid and plasma (unbound fraction) concentrations were similar. Because of the kinetic similarity of meropenem in the extravascular and vascular spaces, tissue fluid concentrations can be predicted from plasma concentrations. We concluded that a dosage of 8 mg/kg, SC, every 12 hours would achieve adequate tissue fluid and urine concentrations for susceptible bacteria with a minimum inhibitory concentration of 0.12 µg/mL. (Am J Vet Res 2002;63:1622–1628)